Find the measure of each numbered angle, and name the theorems that justify your work.

1. $m \angle 2 = 26$

ANSWER:

$$m \angle 1 = 90, m \angle 3 = 64$$
; Comp. Thm.

2. $m \angle 2 = x, m \angle 3 = x - 16$

ANSWER:

$$m\angle 2 = 53, m\angle 3 = 37$$
; Comp. Thm.

3. $m \angle 4 = 2x, m \angle 5 = x + 9$

ANSWER:

$$m \angle 4 = 114, m \angle 5 = 66$$
; Suppl. Thm.

4. $m \angle 4 = 3(x-1), m \angle 5 = x+7$

ANSWER:

$$m \angle 4 = 129, m \angle 5 = 51$$
; Suppl. Thm.

6. **PROOF** Copy and complete the proof of Theorem 2.7.

Given: $\angle 1$ and $\angle 3$ are complementary.

 $\angle 2$ and $\angle 3$ are complementary.

Prove: $\angle 1 \cong \angle 2$

Statements	Reasons
 a. ∠1 and ∠3 are complementary. ∠2 and ∠3 are complementary. 	a ?
b. $m \angle 1 + m \angle 3 = 90;$ $m \angle 2 + m \angle 3 = 90$	b ?
c. $m \angle 1 + m \angle 3 = m \angle 2 + m \angle 3$	c?
d. ?	d. Reflexive Property
e. $m \angle 1 = m \angle 2$	e ?
f. ∠1 ≅ ∠2	f. ?

ANSWER:

Statements	Reasons
 a. ∠1 and ∠3 are complementary. ∠2 and ∠3 are complementary. 	a? Given
b. $m \angle 1 + m \angle 3 = 90;$ $m \angle 2 + m \angle 3 = 90$	b ? Def. of comp. &
c. $m\angle 1 + m\angle 3 = m\angle 2 + m\angle 3$	c. ? Subs.
d. <u>?</u> <u>m∠3</u> = m∠3	d. Reflexive Property
e. $m \angle 1 = m \angle 2$	e? Subt. Prop.
f. ∠1 ≅ ∠2	f? Def ≅ &

7. **PROOF** Write a two-column proof.

Given: $\angle 4 \cong \angle 7$

Prove: $\angle 5 \cong \angle 6$

ANSWER:

Given: $\angle 4 \cong \angle 7$

Prove: $\angle 5 \cong \angle 6$

Proof:

Statements (Reasons)

1. $\angle 4 \cong \angle 7$ (Given)

2. $\angle 4 \cong \angle 5$ and $\angle 6 \cong \angle 7$ (Vert. $\angle s$ Thm.)

3. $\angle 7 \cong \angle 5$ (Subs.)

4. $\angle 5 \cong \angle 6$ (Subs.)

Find the measure of each numbered angle, and name the theorems used that justify your work.

8. $m \angle 5 = m \angle 6$

ANSWER:

$$m \angle 5 = m \angle 6 = 45 (\cong \text{Supp. Thm.})$$

9. $\angle 2$ and $\angle 3$ are complementary.

$$\angle 1 \cong \angle 4$$
 and $m \angle 2 = 28$

ANSWER:

$$m\angle 3 = 62$$
, $m\angle 1 = m\angle 4 = 45$ (\cong Comp. and Supp. Thm.)

10. $\angle 2$ and $\angle 4$, and $\angle 4$ and $\angle 5$ are

supplementary.
$$m \angle 4 = 105$$

ANSWER:

$$m\angle 2 = 75, m\angle 3 = 105, m\angle 5 = 75$$
 (\cong Supp. Thm.)

Find the measure of each numbered angle and name the theorems used that justify your work.

$$m \angle 9 = 3x + 12$$

 $m \angle 10 = x - 24$

ANSWER:

$$m \angle 9 = 156, m \angle 10 = 24$$
 (Supp. Thm.)

$$12.$$
 $m \angle 3 = 2x + 23$

$$m \angle 4 = 5x - 112$$

ANSWER:

$$m \angle 3 = 113, m \angle 4 = 113$$
 (Vert. $\angle s$ Thm.)

$$13.$$
 $m \angle 6 = 2x - 21$

$$m \angle 7 = 3x - 34$$

ANSWER:

$$m \angle 6 = 73, m \angle 7 = 107, m \angle 8 = 73$$
 (\cong Supp. Thm. and Vert. $\angle s$ Thm.)

PROOF Write a two-column proof.

14. Given: $\angle ABC$ is a right angle.

Prove: $\angle ABD$ and $\angle CBD$ are

complementary.

ANSWER:

Proof:

Statements (Reasons)

- 1. $\angle ABC$ is a right angle. (Given)
- 2. $m\angle ABC = 90$ (Def. of rt. angle)
- 3. $m\angle ABC = m\angle ABD + m\angle CBD$ (\angle Add. Post.)
- 4. $m\angle ABD + m\angle CBD = 90$ (Subs.)
- 6. $\angle ABD$ and $\angle CBD$ are complementary. (Def. of compl. $\angle s$)

15. Given: $\angle 5 \cong \angle 6$

Prove: $\angle 4$ and $\angle 6$ are supplementary.

ANSWER:

Proof:

Statements (Reasons)

- 1. $\angle 5 \cong \angle 6$ (Given)
- 2. $m \angle 5 = m \angle 6$ (Def. of $\cong \angle s$)
- 3. ∠4 and ∠5 are supplementary. (Def. of linear pairs)
- 4. $m \angle 4 + m \angle 5 = 180$ (Def. of supp. $\angle s$)
- 5. $m \angle 4 + m \angle 6 = 180$ (Subst.)
- 6. $\angle 4$ and $\angle 6$ are supplementary. (Def. of supp. $\angle s$)